Sulfur-assisted Fabrication of Silicon Nitride Nanorods in Autoclaves at 250 °C

Lishan Yang,¹ Chunli Guo,¹ Liancheng Wang,¹ Zhongchao Bai,¹ Li Fu,¹ Xiaojian Ma,¹ Liqiang Xu,*¹ and Yitai Qian*^{1,2}

¹Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China

²Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry,

University of Science and Technology of China, Hefei 230026, Anhui, P. R. China

(Received November 14, 2007; CL-071262; E-mail: xulq@sdu.edu.cn)

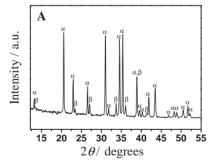
Silicon nitride nanorods were fabricated from Si, NaN3, and sulfur powder at 250 °C. XRD patterns show that the final product is mixed $\alpha\text{-}$ and $\beta\text{-}\text{Si}_3\text{N}_4$. SEM, TEM, and HRTEM images reveal that the product was composed of crystalline Si3N4 nanorods with diameters in the range of 70–400 nm and lengths up to 3 μm . It is found that sulfur plays a crucial role in the low-temperature formation of Si3N4 powders. Low reaction temperature and cheap raw materials make it possible for large scale synthesis of Si3N4 nanomaterials.

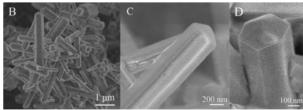
Silicon nitride (Si₃N₄) is an important material for many high-temperature engineering applications owing to its interesting mechanical and physical properties.1 Traditionally, Si₃N₄ powder is prepared by direct nitridation of Si powder,² carbothermal nitridation of silica³ or aluminosilicates, thermal decomposition of polyureasilazane,5 and silicon diimide synthesis. 6 In early research, a Si-H₂S-NH₃ reaction (SiS₂ is an intermediate) was applied for the synthesis of Si₃N₄. Lately, Si₃N₄ was prepared through combustion synthesis by using Si and NaN₃ as the agents, NH₄Cl as an assistant agent, Ti and C as the igniting agents. Previous work in this field has been focused on the fabrication of 1D Si₃N₄ nanocrystals, such as Si₃N₄ nanorods, nanowires, nanoneedles, and nanobelts. In all of the above processes, either reaction temperature or posttreatment temperature must be above 1200 °C in order to obtain crystalline Si_3N_4 .

Recently, $\mathrm{Si_3N_4}$ powders were prepared via solvothermal method: nanocrystalline $\mathrm{Si_3N_4}$ was synthesized from excessive $\mathrm{SiCl_4}$ with $\mathrm{NaN_3}$ at $670\,^{\circ}\mathrm{C}$, 13 or $100{-}150\,^{\circ}\mathrm{C}$ via increasing the amount of $\mathrm{NaN_3}$, 14 or $200{-}300\,^{\circ}\mathrm{C}$ via adding metallic Mg. 15 $\mathrm{Si_3N_4}$ nanomaterials were also prepared by using Mg₂Si, SiCl₄, or $\mathrm{SiO_2}$ as silicon sources and NH₄Cl, Mg₃N₂, or NaNH₂ as nitrogen sources in $450{-}70\,^{\circ}\mathrm{C}$, respectively. 16 All these experiments were carried out in sealed autoclaves, which would maintain a certain high pressure to promote the crystallinity of $\mathrm{Si_3N_4}$. 17

Herein, mixed α - and β -Si₃N₄ nanorods were obtained at 250 °C via a one-step sulfur-assisted route. The yield of Si₃N₄ was 42% (calculated according to the amount of Si) and the α/β phase ratio was 9.¹⁸ The overall favorable reaction could be written as follows:

$$3Si + 6S + 12NaN_3 \xrightarrow{250\,{}^{\circ}C,\,8h} Si_3N_4 + 6Na_2S + 16N_2 \ \ (1)$$


All the chemicals were obtained from Shanghai Chemical Co. and were directly used. In a typical experimental procedure, Si powder (200 mesh, 0.02 mol), NaN₃ (0.08 mol), and sublimed sulfur (0.04 mol) were mixed and put into a 20-mL stainless-steel autoclave. The autoclave was sealed, then heated from room temperature to 250 °C at a rate of $10\,^{\circ}\text{C}$ min $^{-1}$ and main-


tained at 250 °C for 8 h in a furnace. After it was allowed to cool to room temperature, the raw product was washed with dilute hydrochloric acid, dilute hydrofluoric acid and distilled water and finally dried in a vacuum oven at 60 °C for 6 h. The final product was characterized by X-ray powder diffractmetery (XRD; Bruker D8 with Cu K α radiation), scanning electron microscopy (SEM; JSM-6700F) and high-resolution transmission electron microscopy (HRTEM; JEOL 2100; 200 kV).

XRD pattern analysis is used to determine the phases of the samples (Figure 1A). All the peaks that marked with " α " can be indexed to α -Si₃N₄ with lattice constant: a=7.7464 Å, c=5.6166 Å, the values agree well with that of the α -Si₃N₄ (JCPDS Card No. 41-0360); while those peaks that marked with " β " can be attributed to β -Si₃N₄ with lattice parameters: a=7.5965 Å, c=2.9031 Å, consistent with that of the β -Si₃N₄ (JCPDS Card No. 33-1160). No evidence of cubic Si₃N₄ or impurities is observed in this pattern.

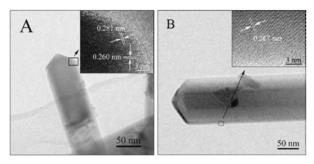

The SEM image (Figure 1B) indicates that the product is mainly composed of one-dimensional nanorods with diameters in the range of 70–400 nm and lengths up to 3 μ m. The magnified SEM images (Figures 1C and 1D) confirm the product composed of nanorods. Figure 1D shows that a typical SEM image of a nanorod with a hexagonal prism morphology in the body and sharp ends in both of its tips, as indicated by the white line.

Figure 2A depicts a typical TEM image of a single α -Si₃N₄ nanorod with a diameter of 70 nm. HRTEM image (inset of Figure 2A) reveals that the clearly resolved interfringe distances

Figure 1. (A) A typical XRD pattern of the product obtained at $250\,^{\circ}\text{C}$ for 8 h, and (B) its SEM image. (C and D) Magnified SEM images of individual Si_3N_4 nanorods.

Figure 2. (A and B) Typical TEM images and HRTEM images (inset) of a single α -Si₃N₄ nanorod and a single β -Si₃N₄ nanorod, respectively.

were 0.260 and 0.281 nm, which are coincide with the (102) and (002) lattice spacings of α -Si₃N₄ (JCPDS Card No. 41-0360), respectively. Figure 2B shows a typical TEM image of a single β -Si₃N₄ nanorod with a diameter of 110 nm. HRTEM image (inset in Figure 2B) shows that the average interplanar distance is 0.267 nm, which is consistent with (101) planes of β -Si₃N₄ (JCPDS Card No. 33-1160).

We call this approach "sulfur-assisted," because sulfur used in this experiment plays a crucial role in the formation of Si₃N₄ nanorods at relative low temperature. In the absence of sulfur, no Si₃N₄ was obtained even if the temperature was increased to 600 °C. Mixed phases of α -Si₃N₄ and β -Si₃N₄ powders were obtained when the molar ratio of Si/S/NaN₃ was 1:2:4. Decreased sulfur amount resulted in the appearance of NaSi₂N₃, while excessive sulfur was not favorable for the formation of Si₃N₄. It is considered that SiS₂ might be an intermediate during the formation of Si₃N₄, although it was not detected in the whole process. The calculated thermodynamic factor values might partly support this assumption: the reaction (eq 1) is thermodynamically spontaneous ($\Delta G = -779 \, \text{kcal/}$ mol) and exothermic $(\Delta H = -954 \, \text{kcal/mol})$; while the values calculated for eq 2 (without sulfur) are $\Delta G = -157$ kcal/mol; $\Delta H = -243$ kcal/mol, which are smaller than those of the calculated values for eq 1. It is obvious that the reaction in eq 1 is more prone to occur than that in eq 2.

$$3Si + 4NaN_3 \rightarrow Si_3N_4 + 4Na + 4N_2$$
 (2)

It was also found that Si_3N_4 could not be obtained if the reaction temperature was below 250 °C or the reaction time was shorter than 4h at 250 °C. Moreover, Si_3N_4 could be obtained within shorter time if the reaction temperature was elevated further, for instance, crystalline Si_3N_4 was formed at 300 °C for 30 min and the α/β phase ratio would fall and stay at 5. In this experiment, NaN_3 was used as the nitrogen source in the mean time to sustain a high pressure (23.2 MPa, calculated by the ideal gas law). However, the excess molar ratio of NaN_3 to sulfur (2.5, 2.75, or 3) led to the preferenercial formation of $NaSi_2N_3$ rather than Si_3N_4 .

The exothermic reaction between NaN_3 and S would occur at 250 °C. With the increasing temperature, NaN_3 spontaneously decomposed to produce Na and N_2 and released lots of energy, which would support the transformation from Si to silicon sulfides (such as SiS_2). Si₃N₄ might be formed via a

chemical metathesis reactions from a $SiS_2/N_2/Na$ mixture system. However, the exact formation mechanism of Si_3N_4 nanorods is not very clear, which might be similar to Tang's model.¹³

In summary, silicon nitride nanorods were prepared from Si powder and NaN₃ with the assistance of sulfur at 250 °C under an estimated pressure of 23.2 MPa. The as prepared Si₃N₄ nanorods are composed of α - and β -phases and well crystallined. The sulfur-assisted technique might be extended to prepare other nitrides.

Financial supports from National Natural Science Foundation of China (No. 2067105820701026), the 973 Projects of China (No. 2005CB623601) and Natural Science Foundation of Shandong province (No. 11190004010664) are greatly appreciated.

References and Notes

- J. Lis, S. Majorowski, J. A. Hlavacek, *Ceram. Bull.* **1991**, *70*, 244; F. Rodríguez-Reinoso, J. Narciso, *Adv. Mater.* **1995**, *7*, 209; A. Zerr, R. Riedel, T. Sekine, J. E. Lowther, W. Y. Ching, I. Tanaka, *Adv. Mater.* **2006**, *18*, 2933.
- 2 Carborundum Co., U.S. Patent 2626828, 1953.
- 3 K. Komeya, H. Inoue, J. Mater. Sci. 1975, 10, 1243.
- 4 S. Bandyopadhyay, J. Mukerji, *Ceram. Int.* **1992**, *18*, 307.
- 5 W. Yang, Z. Xie, J. Li, H. Miao, L. Zhang, L. An, *Solid State Commun.* 2004, 132, 263.
- 6 K. S. Mazdiyasni, C. M. Cooke, J. Am. Ceram. Soc. 1973, 56, 628.
- 7 P. E. D. Morgan, E. A. Pugar, J. Am. Ceram. Soc. 1985, 68, 699.
- 8 W. C. Lee, S. L. Chung, J. Mater. Res. 1997, 12, 805.
- 9 W. Han, S. Fan, Q. Li, B. Gu, X. Zhang, D. Yu, Appl. Phys. Lett. 1997, 71, 2271.
- 10 W. Yang, Z. Xie, J. Li, H. Miao, L. Zhang, L. An, Solid State Commun. 2004, 132, 263; J. Farjas, C. Rath, A. Pinyol, P. Roura, E. Bertran, Appl. Phys. Lett. 2005, 87, 192114.
- 11 H. Cui, B. R. Stoner, J. Mater. Res. 2001, 16, 3111.
- 12 W. Y. Yang, Z. P. Xie, H. Z. Miao, L. G. Zhang, L. N. An, *J. Am. Ceram. Soc.* **2005**, 88, 466.
- 13 K. Tang, J. Hu, Q. Lu, Y. Xie, J. Zhu, Y. Qian, Adv. Mater. 1999, 11, 653.
- 14 Y.-J. Bai, C.-G. Wang, Y.-X. Qi, B. Zhu, Y.-X. Wang, Y.-X. Liu, G.-L. Geng, Scr. Mater. 2006, 54, 447.
- 15 C. L. Guo, Z. Xing, X. J. Ma, L. Q. Xu, Y. T. Qian, J. Am. Ceram. Soc., accepted.
- 16 Y. Gu, L. Chen, Y. Qian, J. Am. Ceram. Soc. 2004, 87, 1810; G. Zou, B. Hu, K. Xiong, H. Li, C. Dong, J. Liang, Y. Qian, Appl. Phys. Lett. 2005, 86, 181901; L. Zhu, L. Chen, T. Huang, Y. Qian, J. Am. Ceram. Soc. 2007, 90, 1243.
- 17 A. Jayaraman, W. Lowe, L. D. Longinotti, E. Bucher, *Phys. Rev. Lett.* **1976**, *36*, 366.
- 18 R. G. Pigeon, A. Varma, J. Mater. Sci. Lett. 1992, 11, 1370.
- 19 J. A. Dean, Lang's Handbook of Chemistry, 15th ed., McGraw-Hill, New York, 1999.
- 20 E. A. Secco, Can. J. Chem. 1962, 40, 2191.
- 21 A. Haas, Angew. Chem., Int. Ed. Engl. 1965, 4, 1014.